
White Paper
Workflow Patterns and BPMN

In general, a pattern describes a solution for a recurring problem.
Patterns are commonly used in architecture as a formal way of
documenting a solution to a design problem in a particular field of
expertise. The idea of a pattern was introduced by the architect
Christopher Alexander and has been adapted for various other
disciplines, including software engineering.

In software engineering, a design pattern is a general reusable solution
to a commonly occurring problem within a given context in software
design. A design pattern is not a finished design that can be transformed
directly into source or machine code. It is a description or template for
how to solve a problem that can be used in many different situations.
Patterns can be viewed as formalized best practices that a programmer
must implement in the application. Most common are object-oriented
software design patterns, which typically show relationships and
interactions between classes or their instances, without specifying the
final application classes or objects that are involved. An example on an
object-oriented software design pattern is ‘Singleton’, which defines
a way of implementing an object-oriented system that restricts the
instantiation of a class to precisely one object.

Gregor Polančič

WP0121 | December 2013

Gregor is an assistant professor at the

University of Maribor and has a decade of

experience in BPMN since its first version

in 2004.

He participated in the development of one

of the first BPMN modeling utilities - a

package of plugins for Visio, which were

introduced in 2004 and is the main author

of the first BPMN poster.

In 2008, he was one of the first authors

who published an article dedicated to the

experiences and practical use of BPMN.

The article was published in “BPM and

Workflow Handbook” in association with

the Workflow Management Coalition

(WfMC).

He is currently researching BPMN from

different technological and user aspects.
Access our free, extensive library at
www.orbussoftware.com/community

© Orbus Software 20132

What are workflow
patterns?
A workflow pattern is a specialized form of
a design pattern as defined in the area of
software engineering or business process
engineering. Workflow patterns refer specifically

to recurrent problems and proven solutions related to the development
of workflow applications. Workflow applications are tightly related to
business processes. A workflow application or simplified a workflow
is usually a centralized and dedicated IT solution, which automates
specific business activities. In contrast to a workflow, a business process
represents a holistic set of automated and manual activities dedicated
to fulfill a business objective, where business process solutions tend to
be more decentralized and generic as workflow ones. This means that
workflow patterns can refer also to process-oriented applications.

Workflow patterns follow the concept of
efficient development. Their usage shall follow
strategies of simplifying maintenance as well
as reducing modeling activities. Most common
are control-flow patterns, which capture
aspects related to control-flow dependencies
between various tasks (e.g. parallelism, choice

and synchronization). However, the workflow patterns are not limited to
control-flow. Other workflow pattern collections include data, resource,
and exception handling. The data perspective deals with the passing
of information and scoping of variables. The resource perspective
deals with resource to task allocation and delegation of tasks. The last,
exception-handling perspective, deals with various causes of exceptions
and various actions that need to be taken because of exceptions
occurring.

The remaining part of the article will focus on control-flow patterns. It
will represent the main categories of control-flow patterns and their
representatives in a BPMN view.

Workflow

A workflow is an automation of a business process, in whole or

part, during which documents, information or tasks are passed

from one participant to another for action, according to a set of

procedural rules.

Business Process

A business process is a set of one or more linked procedures or

activities, which collectively realize a business objective or policy

goal, normally within the context of an organizational structure

defining functional roles and relationships.

Figure 1: Man categories of workflow patterns

© Orbus Software 20133

Control flow patterns
Control-flow patterns are the most popular workflow patterns. This
collection of patterns focuses on one specific aspect of process-
oriented application development, namely the description of control
flow dependencies between activities in a workflow or process. Initially,
Workflow Patterns Initiative (http://www.workflowpatterns.com) defined
20 control-flow patterns [1]. The basic set of 20 control-flow patterns is
divided into six categories:

•	 basic control flow patterns,
•	 advanced branching and synchronization patterns,
•	 structural patterns,
•	 patterns involving multiple instances,
•	 state-based patterns, and
•	 cancellation patterns.

Since their release in 2003, these patterns have
been widely used by practitioners, vendors and
researchers. Review of the patterns associated
with the control-flow perspective over the past
few years has led to the recognition that there
are a number of distinct modelling constructs
that can be identified during process modelling
that are not adequately captured by the original
set of twenty patterns. So the basic set of
control-flow patterns was extended with an
additional twenty three control-flow patterns [2],
classified into eight categories (Figure 2).

The next subsections will represent control-flow
patterns categories and a representative of each
category in a BPMN diagram [3].

Basic Control Flow Patterns

The Basic Control Flow Patterns category captures elementary aspects
of process control and consists of five patterns: sequence, parallel split,
synchronization exclusive choice and simple merge. The following figure
represents BPMN view of the Sequence pattern, where a task in a process
is enabled after the completion of a preceding task in the same process.

Figure 2: Control-flow patterns categories

Boil water Add coffee Drink coffee

Pr
ep

ar
in

g
co

ffe
e

Figure 3: BPMN view of sequence pattern

© Orbus Software 20134

Sequence pattern is used to model dependencies between tasks so that
one task cannot start before another is finished (i.e. serial execution).
To model this pattern in BPMN, it is necessary to connect the activities
sequentially by using sequence flows.

Advanced branching and synchronization patterns

The Advanced branching and synchronization patterns category consists
of patterns which characterize more complex branching and merging
concepts of business processes. The last revision of this category
consists of 14 patterns:

•	 multi-choice,
•	 structured synchronizing merge,
•	 multi-merge,
•	 structured discriminator,
•	 blocking discriminator,
•	 cancelling discriminator,
•	 structured partial join,
•	 blocking partial join,
•	 cancelling partial join,
•	 generalized and-join,
•	 local synchronizing merge,
•	 general synchronizing merge,
•	 thread merge and thread split.

Figure 4 below represents BPMN view of the multi-choice pattern.

Multi-choice pattern presents the divergence of a branch into two or
more branches such that when the incoming branch is enabled, the
thread of control is immediately passed to one or more of the outgoing
branches based on a mechanism that selects one or more outgoing
branches. To implement the multi-choice pattern in BPMN it is necessary

Ad
d

op
�o

na
l i

ng
re

di
en

ts
 to

 c
off

ee

Prepare coffee

Add milk

Add sugar

Want milk?

Want sugar?

Figure 4: BPMN view of multi-choice pattern

© Orbus Software 20135

to use an inclusive (OR) gateway, since it allows enabling one or more
paths according to process data.

Multiple instance patterns

Multiple instance patterns describe process behavior with multiple
threads of execution active in a process model, which relate to the same
activity. Multiple instances can arise in three cases:

1.	 An activity is able to initiate multiple instances of itself
	 (e.g. delivering a coffee multiple times),

2.	 A given activity is initiated multiple times as a consequence of
	 receiving several independent triggering (e.g. preparing an
	 invoice is triggered after delivering a drink and a coffee), and

3.	 Two or more activities in a process share the same
	 implementation definition. This may be the same activity definition
	 in the case of a multiple instance activity or a common sub-
	 process definition in the case of a block activity.

Multiple instance patterns are primary dedicated to the first case (multiple
instances) since they require the triggering and synchronization of
multiple concurrent activity instances. This group of control-flow patterns
consist of seven patterns:

•	 multiple instances without synchronization,
•	 multiple instances with a priori design-time knowledge,
•	 multiple instances with a priori run-time knowledge,
•	 multiple instances without a priori run-time knowledge,
•	 static partial join for multiple instances,
•	 cancelling partial join for multiple instances and
•	 dynamic partial join for multiple instances.

Co
ffe

e
de

liv
er

y
pr

oc
es

s

All Serve

coffee tasks

started

Prepare coffee

Serve coffee to

guests

Prepare invoices

Figure 5: BPMN view of multi-instance without synchronization pattern

© Orbus Software 20136

Figure 5 on the previous page represents a BPMN view of the ‘multiple
instances without synchronization’ pattern, which is used to model
activities that have to be instantiated many times within a process and
do not need to be synchronized for the flow to continue.

It demonstrates that within a given process instance, multiple instances
of Task B can be created. These instances are independent of each
other and run concurrently and there is no requirement to synchronize
them before completion. Each of the instances of Task B must execute
within the context of the process instance from which they were started
(i.e. they must share the same case identifier and have access to the
same data elements) and each of them must execute independently from
and without reference to the task that started them.

State-based patterns

State-based patterns reflect situations for which solutions are seamlessly
accomplished in process environments that support the concept of a
state. In this context, we consider the state of a process instance to
include the broad collection of data associated with current execution
including the status of various activities as well as process-relevant
working data such as activity and case data elements. State-based
patterns category consists of following five patterns:

•	 milestone,
•	 deferred choice,
•	 interleaved parallel routing,
•	 critical section and
•	 interleaved routing.

Re
st

au
ra

nt

8 am

Enable pizza

orders

Turn pizza oven on

Baking

enabled

Turn pizza oven off

Baking

disabled

Baking

disabled

Prepare

pizzas

Baking

enabled

Bake

pizzas

8 pm

Figure 6: BPMN view of milestone pattern

© Orbus Software 20137

Figure 6 represents a BPMN view of the ‘milestone’ pattern, which
defines that an activity is enabled only when the process instance is in
specific state (milestone). If the process instance has progressed beyond
this state, then the task can no longer be enabled.

As evident from Figure 6, task 5 is only enabled when the process
instance is in a specific state (typically implemented with a parallel
branch). The state is assumed to be a specific execution point (also
known as a milestone) in the process model. When this execution
point is reached, task 5 can be enabled. If the process instance has
progressed beyond this state, then task 5 cannot be enabled now or at
any future time (e.g. the deadline has expired).

Cancellation and Force Completion Patterns

Cancellation and Force Completion Patterns utilize the concept of activity
cancellation where enabled or active activity instance are withdrawn.
This category of control-flow patterns consists of following five patterns:
cancel task, cancel case, cancel region, cancel multiple instance activity
and complete multiple instance activity. The next example presents a
BPMN view of a cancel activity pattern.

Figure 7 shows that Task 4 is withdrawn prior to it commencing
execution. If the task has started, it is disabled and, where possible, the
currently running instance is halted and removed.

Re
st

au
ra

nt

Prepare pizza

Bake pizza

Prepare table

Pizza for

delivery

No
Deliver pizza

Yes

Abort

Abort

Figure 7: BPMN view of ‘cancel activity’ pattern

© Orbus Software 20138

Iteration Patterns

The group of iteration patterns deals with capturing repetitive behavior
in a workflow and consists of following three patterns: structured loop,
arbitrary cycles and recursion. The following figure represents BPMN
view of the ‘structured loop’ pattern, which describes the ability to
execute an activity or sub-process repeatedly. The loop has either a pre-
test or post-test condition associated with it.

The condition is either evaluated at the beginning or end of the loop to
determine whether it should continue. The looping structure has a single
entry and exit point.

Termination Patterns

Two patterns deal with the circumstances under which a workflow is
considered to be completed. These are implicit termination and explicit
termination. The next diagram presents ‘implicit termination’ pattern,
which is used to determine when a process instance is considered as
complete. A given process instance should terminate when there are no
remaining work items that are able to be done either now or at any time
in the future and the process instance is not in deadlock.

The above implementation of implicit termination pattern is represented
by adding end events at the end of the paths that must be completed.
The process will be considered as finished when each end event is
reached.

Pi
zz

a
qu

al
ity

 c
he

ck

Pizza order Prepare pizza Bake pizza

IS Pizza

quality OK

YES
Deliver pizza

NO
Inform the baker

Figure 8: BPMN view of ‘structured loop’ pattern

Re
st

au
ra

nt

Analyze new order

Prepare drink

Prepare pizza Bake pizza

Deliver drink

Deliver pizza

Figure 9: BPMN view of ‘structured loop’ pattern

© Orbus Software 20139

Trigger Patterns

Trigger patterns deal with the external signals that may be required to
start certain tasks. Currently, there are two trigger patterns: transient
trigger and persistent trigger. The following BPMN diagram presents
‘persistent trigger’ pattern, which allows an activity to be triggered by a
signal from another part of the process or from the external environment.
These triggers are persistent in form and are retained by the workflow
until they can be acted upon by the receiving activity.

As evident from Figure 10 above, the external signal will enable the
process to proceed to Task 3.

Conclusion
This article presented the concept of workflow patterns, which are a
specialized form of design patterns, dedicated to solve the recurrent
problems in the development of workflow applications and process
engines. Workflow patterns are commonly classified into four categories:

•	 control-flow,
•	 data,
•	 resource, and
•	 exception handling.

Most common are control-flow patterns, which capture aspects related
to control-flow dependencies between various tasks. In this article eight
different control flow patterns were presented, each belonging to different
control-flow pattern sub-category. The patterns were represented as
BPMN diagrams, since BPMN is a rich notation, which is capable of
representing the majority of workflow patterns.

Pi
zz

a
or

de
r a

nd
 d

el
iv

er
y

pr
oc

es
s

Prepare pizza Deliver pizza

Pizza order

Bake pizza

Figure 10: BPMN view of ‘Persistent trigger’ pattern

© Copyright 2013 Orbus Software. All rights reserved.

No part of this publication may be reproduced, resold, stored in a retrieval system, or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

Such requests for permission or any other comments relating to the material contained in this document may be submitted
to: marketing@orbussoftware.com

Resources
[1]	 W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and
	 A. P. Barros, “Workflow Patterns,” Distrib. Parallel Databases, vol.
	 14, no. 1, pp. 5–51, Jul. 2003.

[2]	 N. Russell, A. H. M. T. Hofstede, and N. Mulyar, “Workflow
	 ControlFlow Patterns: A Revised View,” 2006.

[3]	 “BPMN 2 workflow patterns.” [Online]. Available:
	 http://www.ariscommunity.com/users/sstein/2010-07-20-bpmn-2-
	 workflow-patterns. [Accessed: 03-Dec-2013].

Orbus Software
3rd Floor
111 Buckingham Palace Road
London
SW1W 0SR
United Kingdom

+44 (0) 870 991 1851
enquiries@orbussoftware.com
www.orbussoftware.com

